Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins.

Identifieur interne : 000E07 ( Main/Exploration ); précédent : 000E06; suivant : 000E08

Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins.

Auteurs : Myriam Crapeau [Belgique] ; Ahmad Merhi [Belgique] ; Bruno André [Belgique]

Source :

RBID : pubmed:24942738

Descripteurs français

English descriptors

Abstract

Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation.

DOI: 10.1074/jbc.M114.582320
PubMed: 24942738
PubMed Central: PMC4139224


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins.</title>
<author>
<name sortKey="Crapeau, Myriam" sort="Crapeau, Myriam" uniqKey="Crapeau M" first="Myriam" last="Crapeau">Myriam Crapeau</name>
<affiliation wicri:level="4">
<nlm:affiliation>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies</wicri:regionArea>
<orgName type="university">Université libre de Bruxelles</orgName>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region type="region" nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Merhi, Ahmad" sort="Merhi, Ahmad" uniqKey="Merhi A" first="Ahmad" last="Merhi">Ahmad Merhi</name>
<affiliation wicri:level="4">
<nlm:affiliation>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies</wicri:regionArea>
<orgName type="university">Université libre de Bruxelles</orgName>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region type="region" nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Andre, Bruno" sort="Andre, Bruno" uniqKey="Andre B" first="Bruno" last="André">Bruno André</name>
<affiliation wicri:level="4">
<nlm:affiliation>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium bran@ulb.ac.be.</nlm:affiliation>
<country wicri:rule="url">Belgique</country>
<wicri:regionArea>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies</wicri:regionArea>
<orgName type="university">Université libre de Bruxelles</orgName>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region type="region" nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24942738</idno>
<idno type="pmid">24942738</idno>
<idno type="doi">10.1074/jbc.M114.582320</idno>
<idno type="pmc">PMC4139224</idno>
<idno type="wicri:Area/Main/Corpus">000E28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E28</idno>
<idno type="wicri:Area/Main/Curation">000E28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E28</idno>
<idno type="wicri:Area/Main/Exploration">000E28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins.</title>
<author>
<name sortKey="Crapeau, Myriam" sort="Crapeau, Myriam" uniqKey="Crapeau M" first="Myriam" last="Crapeau">Myriam Crapeau</name>
<affiliation wicri:level="4">
<nlm:affiliation>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies</wicri:regionArea>
<orgName type="university">Université libre de Bruxelles</orgName>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region type="region" nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Merhi, Ahmad" sort="Merhi, Ahmad" uniqKey="Merhi A" first="Ahmad" last="Merhi">Ahmad Merhi</name>
<affiliation wicri:level="4">
<nlm:affiliation>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies</wicri:regionArea>
<orgName type="university">Université libre de Bruxelles</orgName>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region type="region" nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Andre, Bruno" sort="Andre, Bruno" uniqKey="Andre B" first="Bruno" last="André">Bruno André</name>
<affiliation wicri:level="4">
<nlm:affiliation>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium bran@ulb.ac.be.</nlm:affiliation>
<country wicri:rule="url">Belgique</country>
<wicri:regionArea>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies</wicri:regionArea>
<orgName type="university">Université libre de Bruxelles</orgName>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region type="region" nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>14-3-3 Proteins (metabolism)</term>
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Amino Acid Transport Systems (chemistry)</term>
<term>Amino Acid Transport Systems (genetics)</term>
<term>Amino Acid Transport Systems (metabolism)</term>
<term>Amino Acids (metabolism)</term>
<term>Arrestins (metabolism)</term>
<term>Binding Sites (MeSH)</term>
<term>Down-Regulation (drug effects)</term>
<term>Lysine (chemistry)</term>
<term>Models, Biological (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (antagonists & inhibitors)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Transcription Factors (antagonists & inhibitors)</term>
<term>Ubiquitin-Protein Ligases (metabolism)</term>
<term>Ubiquitination (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Arrestines (métabolisme)</term>
<term>Facteurs de transcription (antagonistes et inhibiteurs)</term>
<term>Lysine (composition chimique)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Protéines 14-3-3 (métabolisme)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (antagonistes et inhibiteurs)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Régulation négative (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sites de fixation (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Systèmes de transport d'acides aminés (composition chimique)</term>
<term>Systèmes de transport d'acides aminés (génétique)</term>
<term>Systèmes de transport d'acides aminés (métabolisme)</term>
<term>Ubiquitin-protein ligases (métabolisme)</term>
<term>Ubiquitination (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Lysine</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>14-3-3 Proteins</term>
<term>Adaptor Proteins, Signal Transducing</term>
<term>Amino Acid Transport Systems</term>
<term>Amino Acids</term>
<term>Arrestins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Ubiquitin-Protein Ligases</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Lysine</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Systèmes de transport d'acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Down-Regulation</term>
<term>Saccharomyces cerevisiae</term>
<term>Ubiquitination</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation négative</term>
<term>Saccharomyces cerevisiae</term>
<term>Ubiquitination</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Systèmes de transport d'acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Arrestines</term>
<term>Protéines 14-3-3</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Systèmes de transport d'acides aminés</term>
<term>Ubiquitin-protein ligases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Models, Biological</term>
<term>Models, Molecular</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Modèles biologiques</term>
<term>Modèles moléculaires</term>
<term>Sites de fixation</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24942738</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>289</Volume>
<Issue>32</Issue>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins.</ArticleTitle>
<Pagination>
<MedlinePgn>22103-16</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M114.582320</ELocationID>
<Abstract>
<AbstractText>Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation. </AbstractText>
<CopyrightInformation>© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Crapeau</LastName>
<ForeName>Myriam</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Merhi</LastName>
<ForeName>Ahmad</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>André</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium bran@ulb.ac.be.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048948">14-3-3 Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C554942">Aly1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C554941">Aly2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026905">Amino Acid Transport Systems</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019390">Arrestins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099939">BUL1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C117205">BUL2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491145">GAP1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.27</RegistryNumber>
<NameOfSubstance UI="D044767">Ubiquitin-Protein Ligases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048948" MajorTopicYN="N">14-3-3 Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026905" MajorTopicYN="N">Amino Acid Transport Systems</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019390" MajorTopicYN="N">Arrestins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044767" MajorTopicYN="N">Ubiquitin-Protein Ligases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054875" MajorTopicYN="N">Ubiquitination</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Amino Acid Transport</Keyword>
<Keyword MajorTopicYN="N">Arrestin</Keyword>
<Keyword MajorTopicYN="N">Endocytosis</Keyword>
<Keyword MajorTopicYN="N">Stress</Keyword>
<Keyword MajorTopicYN="N">TOR Complex (TORC)</Keyword>
<Keyword MajorTopicYN="N">Ubiquitin</Keyword>
<Keyword MajorTopicYN="N">Yeast</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24942738</ArticleId>
<ArticleId IdType="pii">M114.582320</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M114.582320</ArticleId>
<ArticleId IdType="pmc">PMC4139224</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2007 Jul 3;46(26):7781-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17559233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Nov;23(21):7566-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Apr 1;269(13):9833-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8144575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 May 3;271(18):10946-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8631913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 23;276(47):43939-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2012 Jan 23;196(2):247-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22249293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 15;21(20):3552-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e50458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23227176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Feb 27;513(2-3):193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11904149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 7;289(10):7232-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24448798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Jun;29(12):3307-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19364824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1970 Sep;103(3):770-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5474888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Nov 25;203(4):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24247430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1980 Jun 5;139(4):691-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6251229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2010 Apr;20(4):196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20138522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Oct 1;16(19):5847-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9312043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2014 Apr 14;205(1):11-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2009 Dec;10(12):1856-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Jul;37(1):108-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 23;147(5):1104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(4):e18457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Sep 20;146(6):1227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10491387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 23;276(47):43949-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Jun 5;544(1-3):160-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12782308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1999 May;112 ( Pt 9):1375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10194416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 Jun;9(6):1253-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9614172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 May 4;185(3):493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19398763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013;2:e00459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23599894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):3068-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17553927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 12;278(50):50732-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1995 Oct;18(1):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8596462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Nov 14;135(4):714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2008 Aug;9(8):1372-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18489705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2008 Dec;9(12):1216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18953286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Jun;10(6):398-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19436320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4510-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2563-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7708685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Oct;1798(10):1908-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20599686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Res Int. 2012;2012:242764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22988512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1966 Oct 31;127(2):325-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5964977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Nov 29;1695(1-3):89-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15571811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2012;81:231-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1991 Aug-Sep;7(6):609-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1767589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2012 Mar;13(3):468-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Aug 16;288(33):24063-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23824189</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
<region>
<li>Région de Bruxelles-Capitale</li>
</region>
<settlement>
<li>Bruxelles</li>
</settlement>
<orgName>
<li>Université libre de Bruxelles</li>
</orgName>
</list>
<tree>
<country name="Belgique">
<region name="Région de Bruxelles-Capitale">
<name sortKey="Crapeau, Myriam" sort="Crapeau, Myriam" uniqKey="Crapeau M" first="Myriam" last="Crapeau">Myriam Crapeau</name>
</region>
<name sortKey="Andre, Bruno" sort="Andre, Bruno" uniqKey="Andre B" first="Bruno" last="André">Bruno André</name>
<name sortKey="Merhi, Ahmad" sort="Merhi, Ahmad" uniqKey="Merhi A" first="Ahmad" last="Merhi">Ahmad Merhi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E07 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E07 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24942738
   |texte=   Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24942738" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020